Package index
-
limma_interaction_effect()
- Limma-Based Interaction Test
-
perm_interaction_effect()
- Simple Permutation-Based Interaction Test (No Bootstrapping, No Convergence)
-
subset_limma_interaction_effect()
- Subset Limma Interaction Effect with Stratified Cross-Validation
-
subset_perm_interaction_effect()
- Parallel Subset-Based Interaction Effect Analysis
-
estimate_params()
- Estimate RNA-seq Model Parameters from Count Data
-
sim_2group_expression()
- Simulate RNA-seq Expression Data for Two Groups
-
sim_4group_expression()
- Simulate RNA-seq Expression Data for Four Groups (Two Ancestries × Two Conditions)
-
sim_imbalanced_ancestry()
- Simulate imbalanced ancestry sampling across two cohorts
-
plot_BCV()
- Mean–Dispersion Scatter Plot with Optional Overlay
-
plot_confusion_matrix()
- Plot a binary confusion matrix as a heatmap with TP, FP, FN, TN labels.
-
plot_correlation_difference()
- Plot correlation differences with optional facets
-
plot_correlation_heatmap()
- ComplexHeatmap of Correlation Matrix Across Iterations
-
plot_estimated_dispersions()
- Plot Estimated Gene Dispersions Between Two Datasets
-
plot_estimated_means()
- Plot Estimated Gene Means Between Two Datasets
-
plot_expression_heatmap()
- Expression Heatmap with Ancestry and Group Split
-
plot_feature()
- Plot feature distributions across two splits
-
plot_imbalanced_groups()
- Plot Imbalanced Groups
-
plot_jaccard_heatmap()
- Plot Jaccard Heatmap of Sample Reuse Across Iterations
-
plot_mean_variance_density()
- Plot Mean-Variance Relationship with Density Overlay
-
plot_mean_variance_trend()
- Plot Mean-Variance Trend Using log2-CPM (voom-style)
-
plot_null_distribution()
- Plot permutation-based T-statistics with observed values and p-values
-
plot_pca_cluster()
- PCA Cluster Plot
-
plot_pvalue_concordance()
- Plot concordance of -log10 p-values between two methods
-
plot_pvalue_distribution()
- Plot P-value Distribution Colored by a Binned Fill Variable
-
plot_qq_correlation()
- Faceted QQ plots for specified genes
-
plot_sensitivity_specificity()
- Plot sensitivity and specificity as a bar plot.
-
plot_sim_interaction_effect()
- Plot Simulated Interaction Effects
-
plot_sim_main_effect()
- Plot Simulated Main Effects
-
plot_stratified_feature()
- Plot stratified feature distributions across splits
-
plot_stratified_sets()
- Plot stratified ancestry sets.
-
plot_tsne_cluster()
- t-SNE Cluster Plot
-
plot_volcano()
- Volcano Plot
-
split_stratified_ancestry_sets()
- Split Expression and Metadata into Reference (R), Subset (X), and Inference (Y) Sets
-
track_sample_ids()
- Track Sample Roles and IDs from a Split
-
compute_jaccard_matrix()
- Compute Jaccard Similarity Matrix Between Iterations
-
compute_correlation_matrix()
- Compute Correlation Matrix from Long-format Data
-
compute_qq_correlation()
- Gene-wise quantile correlations
-
summarize_subsets()
- Summarize subsets results by feature, with Cauchy-combined p-value
-
ggsaveDK()
- Save ggplot with optional legend removal and sensible defaults
-
theme_nature_fonts()
- Nature-Inspired Font Sizes Theme (Internal)
-
theme_small_legend()
- Small Legend Theme (Internal)
-
theme_white_background()
- A clean white ggplot2 theme with optional facet labels
-
boot_interaction_effect()
- Simple Bootstrap-Based Interaction Estimation with CI Level Control
-
boot_correlation_diff()
- Bootstrap-Based Correlation Difference Test (Unstratified)
-
loo_interaction_effect()
- Leave-One-Out Diagnostic for interaction effects
-
perm_prediction_difference()
- Permutation Test for Prediction Performance Differences
-
perm_correlation_difference()
- Simple Permutation Test for Correlation Differences