Skip to contents

Aggregates feature-level test statistics across iterations using a Generalized Least Squares (GLS) framework, assuming normality of the GLS estimator. Computes parametric p-values and summary statistics for each feature.

Usage

param_gls_summary(x, alpha = 0.05)

Arguments

x

A data frame in long format with columns: `feature`, `iteration`, `T_obs`, `SE`, and `p_adj`.

alpha

Numeric. Significance threshold used to compute the proportion of significant iterations.

Value

A data frame with feature, GLS estimate, SE, z-score, p-value, FDR-adjusted p-value, and prop_signif.